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Abstract

Dynamic programming is a modeling technique used for the decision
making process. This method can be used to find the set of nondominated
paths in a network with time dependent vector costs. In this report a
dynamic programming algorithm and its implementation are discussed. An

application 1o a fire egress problem is also included.
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1. Introduction

Dynamic programming is a versatile modeling technique that can be used for the decision
making process. One class of applications involves finding the optimal path in a network.
This type of problem has applications in fields such as transportation, telecommunications,
computer architecture, and fire egress. When a network has more than one cost associated
with it, there may not be a unique optimal path, but a set of nondominated paths. For this
project, a dynamic programming algorithm was used to construcf a program that finds the
nondominated paths in a network with multiple costs.

There were two main goals for this project. One was to learn about dvnamic
programming, its applications, and the recent developments in the field. The second wus to
design a data structure to represent a network, implement the dynamic programming
algorithm to find the nondominated paths, and run the program on a sample network.

This report discusses dynamic programming and its extensions to vector cost functions
and time dependent cost tunctions in sections 2, 3, and 4. Section 5 presents a users’ guide to
the program that implements the dynamic programming algorithm for networks with vector
costs. The extension of the program to work with time dependent vector cOsts is also
discussed. In section 6, an application of the program (0 a problem in fire egress is presented.
The code for the two programs can be found in Appendices A and B. Appendix C contains a

sample input file for each program, while sample output files can be found in Appendix D.




2. Classical Dynamic Programming

Consider the directed graph G(A;2), consisting of a set of N nodes = {1, 2, ..., N}
and a sét of m links A = {(i},12), (i3.d4)s . - ., (izm-1.12m)}, where (j,k) denotes a connection
from node j to node k. A path in the network from node ig to node i is a sequence of links
P = {(ig,iy), (ipsln)s - - - (ip_l,ip)} where the initial node of each link is the rerminal node of the
previous link and the nodes ip, . ... i, are distinct. Each link (i.j) has an associated

nonnegative cost ¢j; to travel from node i to node j.

The idea of finding the minimum cost path between two nodes in a network was first
brought to everyone's attention by Bellman when he posed the routing problem (Bellman,
1958): Given N cities, with every two linked by a road, and the times required to traverse
these roads, determine the path from one given city to another given city that minimizes total
travel time. In this problem, the nodes in the network are the cities and the links are the
roads connecting the cities. The cost we wishlto minimize is the total avel time.

Bellman presents a solution to this problem by establishing “functional zquations” and

applving “the principle of optimality.” First, let fj be the time to travel from nede i to node N,

i=1.2 ...,N-land let fy = 0. The principle of optimality states (Beliman. 1965): "An
optimal policy has the property that whatever the initial state and initial decision ure, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.” So if the optimal path from node i to node N passes through node j, this
path includes the optimal path from node j to node N. Thus the routing proolem can be solved

in at most N-1 iterations using the following method (k indicates the iteration

fi(k) = minjti (Cij + fj(k'l)), i=1.2,.... N-1

£y = 0.
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To evaluate fi(1), use an "initial guess” £;(0), i1 =1, 2, ..., N. This method, also known as

backward dynamic programming, gives the minimum time required to travel from every city to
city N.

If one is interested in the optimal path from node 1 to every other node, the functional

values f;,1=1,2,. .., N, represent the time to travel from node 1 to node i. The functional

equations become

f1) =0

filk) = minj:i (fj(k'l) + Cjids 1=2,3.....N.
This is referred to as torward dvnamic programming, and node 1 is called the "root nede.” For
this project, only the forward dynamic programming method will be considered.

Although Bellman assumed that there are two links between every pair of nodes. with
one in each direction, this problem can also be solved for networks that are not completely
connected. The only requirement is that for every node i ,other than node 1, at least one path
exists from node 1 to node 1.

The following diagrams illustrate how forward dynamic programming programming Wworks.

In the diagram below, we have the optimal path from node ! to node 1 with a cost of i}

1

Figure 1. Optimal path from node 1 to node j
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The cost to travel from node 1 to node j is the sum of fj, the cost to travel to node i, and ¢;j. the
cost to travel along the arc (i,)).

To find the optimal path to node j, one must consider all the arcs leading into node j. In

the following diagram, p arcs from nodes il, i2, . . ., ip lead into node j.

Figure 2. Finding the optimal path from node 1 to node j

The minimum cost to go from node 1 to node j is equal to min i +Cy k=1, 2. p.

Two major exiensions to the routing problem were used for this project. Hartlev (1984)
considered the case of more than one cost on a link between earch pair of nodes. For
example, one may wish to minimize both total travel time and total distancz :raveled. The
second major extension of the routing problem, as presented by Cooke and Halsey (1966),
deals with costs that depend on time.

Kostreva and Wiecek (1991) combine both of these ideas and present two 2igorithms for
finding the set of all nondominated paths in a network with time dependent vec:or costs. This

project continues with that idea by providing an implementation of the foraard dynumic

programming algorithm for a network with time dependent vector costs.




3. Vector Dynamic Programming
In the case where several costs are associated with each link in a network, we can no
longer find the minimum cost paths between two nodes. We must now find the nondominated

paths. If there are p costs per link, define the costs o travel from node i to node j as the
p-dimensional vector [cijj. Let [fij] represent the vector sum of the cost vectors for each link

along a path from node i to node j. The objective for this problem is to find the set of

nondominated paths from node 1 to a given node. A nondominated path from node i to node j
with the vector cost [fj;"] has the property that no other path from i to j has a vector cost [fj]
such that [fjjle < [t Ik fork=1.2..... p. with [f;] = [f;"]. For axample. censider the
two-dimensional vector cost [¢y], where the first element [c;j]| is the time to0 rravel link (1))

and the second element [cjj]a 1s the distance from i to j. Among the vector costs [20,20],

(10.20], and [15,10], the paths with costs [10,20] and {15,10] are nondominated. The path
with cost [20,20] is dominated because 10 < 20 and 20 < 20. Note that this path is also
dominated by the path with cost [15,10]. Now consider three paths from i to j with cost
vectors [10,15], [15.10], and [11.11]. All three paths are nondominated, including the one
with cost [11.11]. An algorithm for tinding the cost vectors of nondominated paths is Ziven by
Corley and Moon (1983).

In order to find the set of nondominated paths, consider the functional values {[fj]}, which
represent the set of all vector costs for nondominated paths from node 1 (the root node) to

node j. The functional equations for vector dynamic programming are
([t} = {0}
([fJ” = vMIN(i.j) c 1 { ({6]) + [Cij] }.j=2.3,....N

where 4 is the set of links in the network and the operation VMIN determines the set of



vector costs for all nondominated paths.

The principle of optimality for this case states that if a nondominated path from node 1 to
node j passes through node i, then the path from node | to node i is nondominated. The
algorithm for forward vector dynamic programming follows:

STEP 1

[nitalize {[f;]},1=1, 2,...,N:
((f,0]} = {0}
{[fj(O)]} = [Clj] if(l,j)e A

{[fj(O)]} =MJitlpe A

where [M] is the "big-M" vector (M, . . ., M)T with M equal 10 a very large cost.
STEP 2
Fork =1, 2,...,N-1, find the new functional values

{[fj(k)]} = VMIN(i’j) e A { {[fi(k'l)]} + [cij] },_] =2,3,... N.
Note that this algorithm only computes the functional values for the nondominated paths. To
find the actual paths, one must simultaneously keep track of the sequence of links (or nodes,

associated with each functional value.



4. Time Dependent Vector Dynamic Programming

[f the vector dynamic programming problem is extended to take into account costs that
vary with time, we get time dependent vector dynamic programming. Using the frozen link
model, the costs to travel link (i,j) depend on t, the time of departure from node i. This is

denoted as the vector [cij(t)]. For this project, all time dependent cost functions are step

functions. To simplify computation, the time it takes to travel a link (i,j) will be the first

element of the vector [cij(t)].

Without loss of generality, several other assumptions are made to simplify this problem.
Time starts with the departure from the root node at t = 0 and increases from there. There is
no waiting at any node, so the arrival time at a particular node is the ume ot departure from
that node. Two more assumpions show that all of the elements of the cost vectors. in
addition to time, are monotonically increasing. These assumptions are also necessary to

tormulate the principle of optimality for the time dependent case:

Forty <tp
(a) 1 + [Cij(tl)]l S+ [Cij([2)]1
(b) [cj(tple < [cij(t)]e T = 2,3, ....m
Assumption (a) shows that if someone leaves a node at time t; and someone ¢lse 2aves the

same node at a later time tn, the person who left later cannot pass the first person and be the

first to arrive at node j. Assumption (b) shows that there is no advantage io waiting at a
node because leaving at a later time will not result in a lower cost to travel a link. [t can be
shown that assumption (b) is stronger than assumption (a), as (b) implies (ajy but 1a) does
not necessarily imply (b).

The principle of optimality for this case (Kostreva and Wiecek, 1991) states that "a
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nondominated path p, that leaves the origin node at time t = 0 and arrives at node j at time t;

JY
has the property that for each node i lying on this path, a subpath p; that leaves the origin
at time t = 0 and arrives at node i at time t;, t; < t;, is nondominated.”

The functional values for this problem are given by {[fi]}, the set of vector costs for the

associated set of nondominated paths from node 1 to node i. The algorithm for time

dependent vector dynamic programming follows:

STEP 1

Initialize {[f;]},1=1.2,... . N:
D) = {0)
HEO]) = [c (O] if (1j) € A
L[E{O]) = (M) if (L) e A

STEP 2

Fork =1, 2...., N-1, update the functional values
el = {0
k) = VMING e {TE&DD + [e5] Jj =23, N
where t; = [fi(k-D]}, the time of arrival at node i for the particular path to node

Once again, these values are the vector costs of the nondominated paths. The actual

paths must be found simultaneously.




5. Implementation

The forward dynamic programming algorithm for a network with constant vector costs was
programmed first and then the algorithm was modified for networks with time dependent
vector costs. Both programs were done on the Apple Macintosh [ICX. The program for the
constant cost networks is called DP while the time dependent version is called TD. Both
programs use an input file called NETWORK.DATA that specifies the network to be

optimized. Both programs create an output file NETWORK.OUTPUT that contains the

nondominated paths and their associated costs.

5.1 The Input File

The user defined input file NETWORK.DATA contains the information necessary to
specify the network. The first three values in the file are integers for the number of nodes In
the network, the number of links in the network, and the number of costs per link. The next
three sets of values make up a link list. The first is a list of integers that serve as pointers.
For a network with N nodes and M links, N+1 pointers should be used, starting at 1 and
increasing to M+1 so the number of links entering a node i can be calculated by subtracting
the ith pointer from the (i+1)3t pointer.

The next set of values is a list of M integers that represent the starting node i for each
link (i,j) in the network. The final set of values is a list of M real-valued vectors that zive the
costs to travel each link.

There are two details that should be pointed out about the input file. If there are N nodes
in the network being used, they should be labeled as nodes 1, 2, .. .. N, with node | ceing the
root node. This is necessary since the information about the links leading into node i is found
by using the ith pointer.

It is also important to remember that every node must be accessible from node 1. [f not.
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the program will enter an infinite loop. If a network does not meet this requirement, one can
always add links with extremely high costs so at least one path exists from node 1 to every
other node. A link (i,j) with a high vector cost will indicate an infeasible path to node j and
prevent paths to other nodes from passing through node j.

As an example of how to construct this data file, consider the following network with six

nodes, nine links, and two-dimensional cost vectors.

Figure 3. Sample network
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[t is helpful to construct a table similar to the following in order to determine the values to

Node Pointer Start Node Cost
1 T
2 1 1 (2,5

3 (2,2)
3 3 l (3.2)
4 4 2 (2.3)

3 (4,3)

3 (1,2)
5 7 2 (4,3)
6 3 4 (2,

5 (3,2
(7 10 emeeeemeeee meeeees

Notice that node 1 does not have any entering links. Thus no starting nodes or rosts are
entered. Also note that the seventh value in the pointer column is 10. Even though there is

not a node 7, this value is necessary to determine how many links lead into node 6.




12

The data file for this particular network would look like this (comments added):

692 number of nodes, number of links, number of costs per link
11347810 pointer list
131235245 start node list
25 costs for link (1,2)
22 costs for link (3,2)
32 .

23

43 .

12

43 .

24 costs for link (4,6)
32 costs for link (5,6)

Two more sample input files can be found in Appendix C.

3.2 The Main Program

The purpose of this section is to help anyone who continues to work with the programs
DP and TD by describing the code for DP and the changes that were made to produce TP.
The variable names used in the program are referred to in this description to keep maximum

consistency. The following table describes the variables used in the main program.

Variable Description

N the number of nodes in the network

NMAX the maximum number of nodes in the network

M the number of links in the network

MMAX the maximum number of links in the network

C the number of costs per link

CMAX the maximum number of links

PMAX an estimate of the maximum number of vectors that will be

compared when finding a set of nondominated paths
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Variable Description

PTR PTR(i) indicates where to find the starting nodes of
links leading into node 1 and their cost vectors

STNODE a list of starting nodes for the M links in the network

COST COST(,j) is the jth cost component of link i

K the current iteration (k =1, 2, .. ., N-1)

PCOUNT PCOUNT(i) is the number of nondominated paths leading
into node i before each iteration

CCOUNT CCOUNT() is the number of nondominated paths leading
into node i during each iteration

PPREV PPREV(i,j,k) is the k! node in the jt nondominated path

from node 1 to node i betore each iteration
PPREV(i,j,1) is the number of links in the j‘h path to node i
PCURR PCURR(i,},k) is the kth node in the j'h nondominated path
from node 1 to node i during each iteration
PCURR(i,j,1) is the number of links in the jth path to node 1

FPREV FPREV(i,j,k) is the kth element of the functional value for
the jth path from node 1 to node i before each iteration
FCURR FCURRC(i,j,k) is the kth element of the functional value for
the jth path from node 1 to node i during each iteration
MATRIX the set of cost vectors that are used to determine the set of
nondominated paths from node 1 to a particular node
PMAT the set of paths for the cost vectors in MATRIX

The values NMA X, MMAX, CMAX, and PMAX are specified in parameter statements at
the beginning of the main program and the subprograms that use those parameters. These
values are used to dimension arrays used throughout the program. The current values are
NMAX=20, MMAX=100, CMAX=4, and PMAX=50. If the value of CMAX needs to be
increased, in addition to changing the appropriate parameter statements, one should also
change format statement number 999 in the main program and format statement number 100
in the subroutine OUTPUT to allow more than four cost elements to be printed on one line.

The program DP begins by reading in the network from NETWORK.DATA and initializing
the functional values and path counts. The subroutine READ initializes N, M, and C and the

arrays PTR, STNODE, and COST. The values for PCOUNT(1) and CCOUNT(1) are set to 1




FPREV(],1,i) is setto O for i = 1 to C. All other values in the PCOUNT array are initially set
to | while the functional values for FPREV(i,1,j),1 =2t N, j = | to C, are initially set t0 the
value BIGM. This number should be large enough so that in the early stages of the
algorithm, say iteration k, when no paths from node 1 to node 1 have k or fewer links, this path
will have such a large functional value that it will not be selected as a nondominated path.
The path array PPREV is initialized to contain all zeros since no paths exist yet.

The next step in the program is to change the values of FPREV and PPREV for which the
links (1,i) exist. Fori =110 M, if STNODE() equals | the functional value and path must be
reinitialized for that link. The index j for that particular link is tound using the array PTR.
Then FPREV(j,1,A), A = 1 to C, is set to COST(I). Since there is only one link in the path
trom node 1 to node [, PPREV(J,1,1) is set to 1. |

Once the functional values and paths have been initialized, the dynamic programming
algorithm iterates N-1 times. For K = 1 to N-1, the functional values and paths for nodes 2
through N are updated. For [ = 2 to N, the links leading into node I are found. To identify
these links, start a third loop tor J = PTR(I) to PTR(I+1) - I. Then start a fourth loop for ecach
nondominated path from node ! to the starting node of link J. For A =1 to
PCOUNT(STNODE())), find the cost to travel from node | to node I along path A by adding
FPREV(STNODE(J),A.B‘) and COST(J,B), B = 1 to C. These functional values are put into
MATRIX and the corresponding paths are put into PMAT. The valﬁe of MATRIX(Z,B) is the
Bth cost element of the Z!h path from node 1 to node [, which equals
FPREV(STNODE(]),A.B) + COST(J.B). PMAT(Z.1) contains the number of links in the
path from node 1 to node [. This equals PPREV(STNODE(J).A,1) + 1. The B node along
this path is put in PMAT(Z,B), which is found from PPREV(STNODE(J),A,B) for B = 2 10

PMAT(Z.1) - 1. The last node in the path is STNODE(), which is put into
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PMAT(Z,PMAT(Z,1)).

Now that a matrix containing all the paths from node 1 to node I that use the
nondominated paths from the previous iteration and a matrix containing the corresponding
functional values have been constructed, the subroutine VMIN will use the functional values
in MATRIX to determine the updated set of nondominated paths from node 1 to node I. The
number of nondominated paths is returned in the variable NUM while the paths themselves
are returned in the two-dimensional array PSOL. The functional values for these paths are
returned in the matrix SOLN. The current count of nondominated paths from node 1 to node I,
CCOUNT(I) is set to NUM. For each nondominated path A = 1 to COUNT(I), the current
functional value FCURR(I,A,B) is set to SOLN(A,B), B = 1 to C. The current path PCURR
is also updated by PCURR(I.A.B) = PSOL(A,B) for B = 1 to N-1. Finally, the functional
values for path A to node I are sent to the output file NETWORK.QOUTPUT.

Once the loop for node I = 2 to N is completed, the previous values for the counts of
nondominated paths, the nondominated paths themselves, and their functional values are
updated by setting PCOUNT = CCOUNT, PPREV = PCURR, and FPREV = FCURR before
¢oing to the next iteration of the algorithm.

Once the N-1 iterations of the forward dynamic programming algorithm are complete, the
final results containing all nondominated paths from node 1 to every other node, with costs,

are sent to NETWORK.OUTPUT through the subroutine OUTPUT.

3.3 The Output File

The output file NETWORK.QUTPUT contains two parts. The first consists of all
functional values for iterations 1 through N-1 of the algorithm. Functional values are given for
each path leading from node 1 tonode i,i=2,3, ..., N.

The second part of the output file is a list of each nondominated path from node 1 to every
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other node along with the cost to travel each path. The path from node 1 to node i is
nce of links leaving node 1 and ending at node i. Sample output files

represente

o
o
2
jov]
(%]
1)
Ral
)

can be found in Appendix D.

5.4 Subprograms

The main program calls three subprograms, READ, VMIN, and OUTPUT. The subroutine
VMIN calls three other subprograms, VCOMP, VEQUAL, and PEQUAL. When the
subroutine READ is called, the files NETWORK.DATA and NETWORK.OUTPUT are
opened. The number of nodes in the network, N, the number of links in the network, M. and
the number of costs per link, C, are then read from the data file. Then the N+1 pointers are
read into the list PTR, followed by STNODE, the list of starting nodes for each of the M iinks.
The last set of data to be read is the two-dimensional array COST. For zach link
[=1,2,..., M, COST(I.B)isreadforB=1,2,...,C.

The subroutine OUTPUT writes the cost of each nondominated path from node 1 to every
other node followed by the path itself to the file NETWORK.OUTPUT. The procedure starts
with the path from node 1 to node 1, the link (1,1), with a cost of 0. Then for I = 203,000,
the nondominated paths from node 1 to node [ are sent to the output file. For J =1 to
PCOUNT(D), the vector cost FCURR(I,J.K), K = 1 to C, is written to NETWORK.OUTPLT.
Then the path is written link by link, starting from node | and ending at node .

The subroutine VMIN determines the set of nondominated vectors from the
two-dimensional array MATRIX. Values for R, the number of vectors in MATRIX. VIN, the
mairix itself, and PIN, the set of corresponding paths, are passed to VMIN. which then
returns NUM, the number of nondominated paths, POUT, the paths themselves. and VOUT,

the vector costs corresponding to these paths.
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The algorithm for VMIN which appeared in the Journal of Optimization Theory and
Applications (Corle)./ and Moon, 1985) is given below. The set vmin V represents the set of

vector minimums from the r input vectors.

Step 1. Seti=1,j=2.

Step 2. Ifi=r-1,gotoStep 6. If vj<vj, goto Step 3. If v; < vj, go 1o Step 4.
Other wise, go to Step 3.

Step 3. Seti=i+1,j=1i+1;gotoStep?2.
Step 4. Setvj=v,r=r-ligoto Step 2.

Step 5. Ifj=r putv;s vmin V, and go to Step 3. Otherwise, setj=j+1,and
go to Step 2. '

Step 6. If vjSvi putyje vmin V, and stop. [f v; <vj, put v; € vmin V, and stop.
Otherwise, put v;, v; € vmin V, and stop.

Three changes were made to this algorithm to implement it in VMIN. First, the algorithm
was adjusted to handle the case when only one vector is sent to VMIN. That vector 1s
returned as the only nondominated vector. The second change was made so that the
algorithm will not discard paths that have a vector cost identical to another path. This was
accomplished by discarding vectors that were greater than or equal, but not identically equal,
o some other vector using the logical function VCOMP. The third change was necessary to

prevent the algorithm from terminating prematurly in certain cases. [t is necessary o check
for the case where j = rin step 4. If j =r, then set j = j - 1. Otherwise, set vj = vi. With

these three changes, the VMIN algorithm becomes:

Step 0. [fr=1, putv) e vmin V, and stop.

Step 1. Seti=1.j=2

Step 2. Ifi=r-1,gotoStep6. If V| <vi, (Vj #v;), goto Step 3. Ifv; < vj, (vi = v,
go to Step 4. Other wise, go to Step 5.




Step 3. Seti=i+1,j=i+1;gotoStep2.
Step 4. Ifj=r setj=j- 1. Otherwise, setvj=v,. Setr=r-1; gotoStep 2.

Step 5. Ifj=r, putvie vmin V, and go to Step 3. Otherwise, setj =j + 1, and
go to Step 2.

Step 6. If vj<S v, (vj# V), put vj € vmin V, and stop. If vi S vj, (vi # vj), put vi€ vmin V,
and stop. Otherwise, put vj,v; € vmin V, and stop.

| P s [ P .
VOUT, the paths associated with these vectors are put into POUT at the same time. The

count for the number of nondominated paths is also incremented at this time.
[n order to compare the vectors v and v;, VMIN uses the logical function VCOMP. The

matrix VIN with its dimensions R and C, and the indices [ and J are passed to the function.
VCOMP(MATRIX.IJ.R,C) returns .TRUE. if vector [ of MATRIX is less than or equal, but
not identically equal, to vector J of MATRIX and .FALSE. otherwise.

The function starts by checking for equality of the two vectors. If they are equal, .FALSE.
is returned. Once an element of vector I is found that does not equal the same element in
vector J, the function looks for an element of J that is greater than the same element in vector
[. If one is found, .FALSE. is returned. Otherwise .TRUE. is returned.

VMIN uses the subroutine VEQUAL 1o set one vector cost equal to another.
VEQUAL(MATL.I,MAT2.J,C) will set column I of the matrix MAT1 equal to column J of the
matrix MAT2. The dimension of the vector is given by C.

VMIN also uses the subroutine PEQUAL to set one path vector equal to another.
PEQUAL is identical to VEQUAL except that PEQUAL is used for the integer-valued

vectors representing the paths while VEQUAL uses real-valued vector costs.

(9]
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5.5 The Time Dependent Algorithm

The modified program TD required very few changes to take into account time dependent
vector costs. There were two modifications to the COST data structure. The first element of
the vector cost for a link is specified to be the time required to travel that link. The second
change results from the use of step functions for the time dependent costs. Three parameters
must be used in the input file NETWORK.DATA to define the costs on each link: LCOST,
the lower vector cost, UCOST, the upper vector cost, and T(l), the time where the costs rise
from LCOST to UCOST for link I. Recall that LCOST < UCOST. If the costs for a particular
link I remain constant over time, LCOST can be set equal to UCOST or T(I) can be set w0
zero.

A new variable TIME is needed to determine what part of the cost function should be
used for a particular link. If one wants to travel link (1,j), TIME is set to the first element in
the tunctional value for the particular path leading to node i, which is the time required to
travel that path to node 1.

When the functional values are initialized for nodes that have links entering from node 1,
the values should be set to the values of the lower step LCOST.

The last modification was made in the calculation of the cost to travel a certain path from
node 1 to node i. When constructing the cost matrix to send to the VMIN procedure. the
function COST is used to determine the cost to travel the last link in the path (o node i
COST(LJ, TIME,LCOST.UCOST,T) returns the Jth cost element of link I at time TIME for the
step function defined for link [. This function returns LCOST(LJ) if TIME is less than T(I)
and UCOST(LJ) otherwise.

The format for the output file NETWORK.OUTPUT remains the same as in the previous

program. Sample input and output files can be found in Appendices C and D.
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6. Application

One of the applications of dynamic programming mentioned earlier was that of fire egress.
If a building is represented as a network, where each room is a node and rooms that are
connected have links connecting the nodes, one might be interested in the optimal paths from
cach room to exit the building in order to plan fire escape routes. The solution set for this
problem is the set of nondominated paths from every room to the outside. One node would be
located outside the building and each room with a door or window leading outside would have
a link to that node. The cost for this problem consists of two components: time and distance.
One can expect these costs to increase during a fire, so these costs will depend on time.

The information desired from this problem is the set of optimal paths from every room in
the building to the outside. This suggests that the backward dynamic programming method
be used to solve this problem. However, when time dependent costs are taken into account,
the backward method will not work without making adjustments to the problem (Kostreva
and Wiecek, 1991). The reason backward dynamic programming becomes complicated is that
the costs to get from one node to another depend on the time of departure, which starts at
zero and increases from there. Going backward, one starts at the outside node, where the
arrival time is unknown. The cost to travel a link (i,j) cannot be determined since the time of
departure from node i is unknown. The solution for a fire egress problem can be found by
repeating the forward dynamic programming algorithm for each room in the building. Although
there is excess information generated, this is still more efficient than the backward method
(Kostreva and Wiecek. 1991).

This particular application uses a building with fifteen rooms. The cost functions on some
of the links are step functions while the other links have constant costs. The network below

represents the building. The table that follows gives the time and distance to travel between

the rooms.
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{
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ink Cost

((1,1) ift<s
(11,10) {

1(3,2) ift>5
(11,15) (12,3)

((3.3) ift<s
(12,10) y

1(6,4) if1>5

[(3,3) ift<s
(13,10) {

L(6,4) ift>5
(13,14 (100,100)
(14,13) (6.2)
(15.11) (100,100)
(15.16) (5.3)

Notice that on certain links, such as (4,3) and (6,7), the costs are set to (100,100). This. 1S to
insure that a path will not lead to a dead end, which is undesirable when planning fire escape
routes. Also note that the fire occurs in room 4 at time t = 3 and spreads to rooms 8 and 10 at
time t = 3.

Before solving this for the time dependem case, the nondominated paths were found for
leaving the building when there is no ftire. Since this is not a time dependent problem, it was
solved using one iteration of forward dynamic programming on a similar network. Let node 1,
the root node, represent the outside and node 16 represent room 1. Reverse all of the links,
so link (1) becomes link (j,i). The upper step of each cost function is ignored while the lower
step will be used for the costs to travel each link. The output for this program is interpreted
by replacing node | with node 16 and vice versa, reversing the links, and reversing the order
of the links in the path to obtain the nondominated paths from everv room to the outside. The

results are given in the tollowing table.
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Node Cost Path
l 2.2 (L,16)
2 3.2 (2,16)
3 4,4 (3,1), (1,16)
4 7.4 (4,6), (6,16)
5 8.5 (3.4), (4,6), (6,16)
6 3,2 (6,16)
7 4,3 (7,6), (6,16)
8 7.1 (8,16)
8 54 (8,9), (9,16)
9 22 (9,16)
10 11,9 (10,4), (4,6), (6,16)
11 12,10 (11,10), (10,4), (4,6), (6,16)
11 17,8 (11,15), (15,16)
12 14,12 (12,10), (10,4), (4,6), (6,16)
13 14,12 (13,10), (10,4), (4,6), (6,16)
14 20,14 (14,13), (13,10), (10,4), (4,6), (6,16)
15 5,3 (15,16)

This method of using torward dvnamic programming on a trénsformed network to obtain the
nondominated paths to a particular node trom every other node is a concept that seems to
work on networks with constant costs, but will not be proved in this paper.

To solve the problem for the time dependent case, it was necessary to run the program
fifteen times using each node, except 16, as the root node. Since the program TD uses node |
as the root node, node 1 and node k were switched for k = 2, 3, . . ., 15 to make fifteen
different networks. The input file NETWORK.DATA was reconstructed for each case to
build an appropriate data structure. For each execution of the program, the only pertinent

information from the output file is the set of nondominated paths from node 1 to node 16. The



results are summarized below.

Z,
)
o
(¢4
P!
o)
b4

1 22

2 32

3 4.4

4 74

5 8.5

6 3,2

7 4.3

3 7.1

3 5,4

9 2.2
10 1.9
i1 12,10
I 17,8
12 18,14
12 21,12
13 18,14
13 2112
14 27,17
14 30,15
13 5.3

25

Path

(1,16)

(2,16)

(3,1), (1,16)

(4.6), (6,16)

(5.4), (4,6), (6,16)

(6,16)

(7.6), (6,16)

(8,16)

(8.9), (9.16)

(9,16)

(10,4), (4,6), (6,16)

(11,10), (10.4), (4.6), (6,16)
(11,15), (13,16)

(12,10), (10,4), (4,6), (6,16)
(12,10), (10,1D), (11,15), (15,16)
(13,10), (10,4), (4,6), (6,16)
(13,10), (10.11), (11,15), (15,16)
(14,13), (13,10), (10,4), (4,6), (6.16)
(14,13), (13,10, (10.11), (11,15), (15,16)
(15,16)

Comparing these results to those for the constant cost case, one finds that the only

differences are that the costs to leave from rooms 12, 13, and 14 have increased and there are

two nondominated paths from each of these rooms to choose from to get outside.
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7. Recommendations for Further Research

The dynamic programming algorithm has been implemented to find the nondominated
paths in networks with vector costs and in networks with time dependent vector costs. To
accomplish this, a data structure using link lists was used to represent the network. The cost
functions for the time dependent case are step functions.

Four improvements could be made to these programs to make them more versatile. The
first two deal with the network data structure. The current method of reading the network
into the program requires the user to construct the link lists by hand and put the data into the
input file. For large networks, this can be time consuming and the chance of making a
mistake increases. [t would be desirable to have a subprogram to read in a simpler network
structure from the data file and then convert the data to the link list data structure.

The second modification could improve efficiency in time dependent applications like the
tire egress problem where one would like to know the nondominated paths from every node to
node 1. As the program stands, node 1 is the root node. This means that the user must run
the program N-1 times, recreating the network data structure each time. Rather than
requiring node 1 as the root node, it would be helpful to let the user choose the root node or
have the program loop through nodes 1 :0 N-1 as root nodes.

Another improvement could be made to the path array in order to make a more efficient
use of the available memory. As the programs stand, the array for a particular path contains
the number of links in the path and all the nodes the path goes through except node 1 and the
last node. But because of the principle of optimality, the only node that needs to be stored is
the second to last node the path passes through. This could be an advantage when running
the program for a large network where there may be many nondominated paths that are
stored. If this change is made, the procedure OUTPUT will have to be modified to write the

results to an output file. Rather than listing the nondominated paths from node 1 to node J,
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j=2,...,N, the paths containing one link should be written first, followed by the paths with
two links, on up to the paths containing N-1 links (if any).

A fourth improvement would be to allow the use of time dependent cost functions other
than step functions. This could be done by letting the user specify the cost functions for each
link in the input file or by defining the function COST to use specific cost functions.

With these improvements, the program would require less of the user and allow for the

solution of more realistic path planning problems.
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THIS PROGRAM FINDS THE NONDOMINATED PATHS IN A NHETWCRX WZ

—e e
=
-3

COSTS USING FORWARD DYNAMIC PROGRAMMING.

VARIABLES
N
M
C
PTR

STNCDE
COST
PCOUNT (CCOUNT)

PPREY (PCURR)

NUMBER Of NCDES IN THE NETWORX

NUMBER OF LINKS IN THE NETWCRK

NUMBER OF COST COMPONENTS TO A LINK

PTR(I) TELLS WHERE TO LOOK IN STNODE FOR LIMNXS
LEADING TO NCDE I

STNODE (J} GIVES STARTING NODE OF LINXK J

COST(I,J) IS THE JTH COST COMPCONENT

PCOUNT (K) (CCOUNT (K)) IS THE NUMBER
THAT LEAD INTO NCDE X BEFCRE (DURING)

PPREV (I, J,K) (PCURR(I,J,K)) IS THE XTH NCDE
JTH NONDOMINATZD PATH FROM 1
ZACH ITERATION

[
LIt C

. p—~ i~

>

J Ll

NCITCHMIUVATED

s
Z&CH

TC I 3ZXC=RE

Ty Tuw

(o

NOTE : PPREV(I,J,1l) (PCURR(I,J,1)) IS5 TEZ VEZIZ C
JTH NONDOMINATED PATH FRCM L TC I 2ZZTzzZ (T
EACH ITERATION
FPREV (FCURR) FPREV(I,J,K) (FCURR(I,J,K)) IS THE FUNCTICNAL V/ALUZ
THE KTH COST CCMPONENT FOR THE JTH 2ATH TC
NCDE I BEFCRE (DURING) EACH IT=ZRATICH
IMPLIZCIT NONE
INTZZER N, NMAX, M, M, ¢, CMAX, PMAX, I,0,%,&,3,2,7, U4
SAZAMETER (NMAX=20, M4AX=100, CMAX=4, 2MAX=30)
INTIGER 2TR(NMAX+1), STNCDE (MMAX), PCOUNT (MMAK), TTOUNT (12404
TNTIGIR 2PREV (NMAX, PM2X, NMAX~-1), PCURR (NMAX, PMAX, NMAL-1)
INTIGER PMAT (PMAX, MMAX-1), PSCL (PMAX, XMAX-1)
XTAL 2IEM, MATRIX(PMAX,CMAX), SCLN(2MAX, CMAX), COST (M, M,
REAL TPREV (NMAX, PMAK, CMAXK) , TCURR (NMAX, 2MaX, CMEK)
READ IN NETWORK
3ICM = 100.0
CALL READ(N,M,C,PTR, STNCDE, COST)

INITIALIZE PATH
PCIUNT (1)

(%)

ZCNTINUE
CC r=2,N

(I)
20 J=1,C
FPREV (I, 1,J)
CONTINUE

CCNTINUE

INITIALIZE PATHS

zC 25 I=1,N
>C 27 J=1,N-1

PPREV(I,1,J)
CONTINUE
CONTINUE

A LI (1,3

I=1,M
IF (STNODE(I)
IF (PTR(J+1)
DO 40 A=1
FPREV (

LEQ.

CCUNTS AND TUNCTIONAL VALUE

3IGM

(]

"
HH

UNCTIONAL VALUZ

W
14
]

2 ]
SN

1)
.GT.

 C

J, 1, A)

CCST(IL,A)

- e~

e A

U LS |




40 CONTINUE
PPREV(J,1,1) =1

zZLSz
J = J+l
GOTO S0
ENDIF
ENDIF
30 CCNTINUE

cC TORWARD DYNAMIC PRCGRAMMING
o NEED N-1 ITERATIONS
DO 60 K=1,N-1
NRITE (6, *)
WRITE (6,998) X
ARITZ(6,997)
Z TOR NODES 2 TO N
DO 70 I=2,N
: TCR ZACH LINX (J,I)
2 =273
¢ 30 J=PTR(I),ZTR(I-1)-1
z AND FCR zZACH PATH TO NCDE J
20 30 a=1,BPCCUNT (STNODE (J))
z TIVD CZOST OF EACH PATH TO NCDE I
Z = Z+1
DC 1380 3=1,C
MATRIX (Z,B) = TPREV(STNCDE(J),A,3) +
10 CONTINUEZ
C ACD © TC THE COUNT OF NCDES PER =
DMAT(Z,.) = PPREV(STNCDE(J),A,1) + 1
c GET NODES IN EACH PATH TO NODE J
DO 105 23=2,2MAT(Z,1) - 1
PMAT(Z,32) = DD:’\EV(S“JODE(J),A,B)
Gz CONTINUZ
Z ACS ILAST VODE FCR NEW 2ATH
OMAT (Z,PMRT(Z,1)) = STNCDE(J)
2C CCONTINUE
30 CONTINUZ
< TIND VECTCR MIN OF ALL PATHS
s UMIN(Z,C,MN-1,NUM,MATRIX, ?MAT, SOLN,PSOL)
< UPDATE COWNT CF PATHS TC NCDE I
CCCOUNT(I) = NUM
z TOR ZACH zATEH
20 110 A=l,NuM
c UPDATE “UWCTIONAL VALUZS
DO 120 B=1,Z
FCURR(I A 3) = 3S0OLN(A, 3)
120 CCNTINUE
c AND UPCATEZ PATH

DO 125 B=1,l-1
PCURR(I,&,3) = P?SOL(A,B)
128 CONTINUE
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QUTPUT NCDE,

WRITE (6, 999)
CCNTINUE
CONTINUE

I

SET PCOUNT
DO 65 I=2,N
PCOUNT(I) =

DO

CCOUNT

DO 67 B=1,C
FPREV (I, A, B)

CONTINUE

DO 68 B=1,N-1
PPREV(I,A,3)

CONTINUE

CCNTINUE
CONTINUE

I,A,

CCOUNT,

(FCURR(I,A,B),B=1,C)

FPREV = FCURR,

(I)

56 A=1,CCOUNT (I)

n

FCURR(I, A, B)

i

PCURR(I, A, B)

GO TO NEXT ITERATION

CCNTINUE

TORMAT (' ITERATICN ', I4)

TORMAT('NODE  PATH
— ALY TY 5 AT D

NPTyt
JALL SUTPUT

(N,M,C,7CURR,

PRCGRAM

3UBRCUTINE READ(N, M, C,
THIS 3UBRCUTINE READS IN
ILPLICIT NCNE

IUTEGER MMAX, MMAX, CMAX
SARAMETIR (NMAX=20, MQMAX
INTEGER PTR(NMAX+1),

RZAL CCST (MMAX, CMAX)

OPEN (2,TILlE="NETWCRX.DA
ZPEN (6,TILE='NETWCRX.CU

CF NCDZS,
c

READ STARTNODE LIST
RZAD (2, 7)

READ IN COST OF EACH L
20 30 I=L.,M

READ(Z, *)
CCNTINUE
RETURN

(COST (1,5,

ZND

NUMBER

(STNODE(I) , I=1,

TUNCTICNAL VALUES')

C 'NZTWCRX.CUT2UT'

2COUNT, 2CURR)

PTR, STNODE, COST)

THE NETWCRX TRCM THE ZTILE

, N, M, C, I, 3
(=100, CMAX=4)

STNCDE (MMAX)

TA')

TPUT'")

NUMBEZR Crf LINKS, AND NUMBER CF

M)

-
PR 34

J=1,0C)

PATH NUMBER, AND FUNCTIONAL VAL

, e
LS

AND PPREV = ZCURR

"NETWCRX.ZATA!
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AS a TR
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SUBROUTINE OUTPUT (N, M, C, FCURR, PCOUNT, PCURR)

WRITES

Mp

T

'UH 'UHH
‘IZ

v
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mn

em
PR T S

rmo

N Lo
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RESULTS TO 'NETWCRX.COUTPUT'

IT NONE

R NMAX, MMAX, CMAX, PMAX, N, C

RAMETER (NMAX=20, MM2x=100, CMAX=4, PMAX=50)

SGNR PCOUNT (NMAX) , PCURR (NMAX, PMAX, NMAX~1)

FCURR(VMAX,PMAX CMAX)
I,J,%

ER

E(6, ™)

(6,100) 1, (FCURR(L,1,X),K=1,C

WRITE(6,110) 1,1
0 10

20

I=2,N

20 J=1,PCOUNT (I}

WRITE(5, *)

NRIT (5,lOC) I,(TCV.R(' J,X),%=1,C)
(

=132
>C 0 L=l,2CUrR(I,3,0)
T (L .ZG. 1) TEHEZD
NRITZ(5,2.0) 1,2CURR(I,J,2)
ILSE IT (L .=0. PCURR(I,J,1l)) THENW
NRITZ(5,210) PCURR(I,J,L),I
ZLSE
NRITZ (§,110) PCURR({I,J,L),PCURR(I,J,
INDIF
CONTINUE
ZNDIT
CONTINUZ
CCNTINUE
TORMAT('L TC O, 2, &TT7.L)
SCRMAT(T LIz, e,
oo
SU3ROUTINE WMIN(R, C, D, NUM, VIN, PIN, VOUT, PCUT)

—~-
Pipe S0
TRC
—us

B

~

ROUTINE FINDS THE VECTOR MINIMUM (THE SET O

YECTCRS IN /I 2ND RETURNS THE SOLUTICN TXH
TATED PATHS AZZ SENT 3Y 2IN AND RETURNED

HZ MNUMBER CF JZCTCRS SENT TO VMIN, X IS TEZ

IMPLICIT NCNE

A St~

RLAL VIN(PMAX,CMAX),

IR CMAX, C, I, J, X, PMAX, R, NUM, NMAX, D
AMETER (CMAX=4, PMAX=50, NMAX=20)

VCUT (PMAX, CMAX)

TNTEGER PIN(PMAX,NMAX-1), POUT (PMAX, NMAX-1)
CAL VCCMP
TYTERNAL VCCMP, VEQUAL, PEQUAL
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RCUGH W2UT.

THRCUGE

CMBZR
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40
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J =2

IF (R .EQ. 1) THEN

CALL VEQUAL(VOUT,1,VIN,1,C)
CALL PEQUAL (POUT,1,PIN,1,D)
GOTO 60

IF (I .EQ. R-1) THEXN
GOTO 50

ZLSE IF (VCOMP(VIN,.,I,R,C)) THEN
GOTO 20

ZLSE IF (VCCMP (VIWN,I,J,R,C)) THEN
GOTO 30

ZLSE
50TO 40

INDIT

I = I+l

J = I-1

Z0TO 10

'
')

t
'

<y
[ ]
0O
e

!
pa o}

!

(
CALL VEQUAL(VIN,J,VIN,R,C)
CalD DEQUAL(PIN, J,2IN,R,D)
ZDIT
2 = 2-1

T (J .EQ. R) THEN
call YEQUAL (VCUT,X,VIN,I,C)
CAZI DPEQUAL(PCUT,X,PIN,I,D)
“ = X+l

I3z
J = J+1
SCTC 10

TTOJCoMPIUVIN, S, I,R,C}) THEN

SATI VEQUAL(VCUT, X,VIN,J,C)
CAZL PEQUAL(PCUT,X,PIN,J,D)
5CTC 60

=z :F (vcemp (VIN, I,J,R,C)) THEN
CcALL VEQUAL(VCUT,X,ViIN,I,C)
CnLu PEQUAL (POUT, X, PIN, I, D)
JOTO 50

CALL YEQUAL(VCUT,X,VIN,ZI,Z)
CATL PEQUAL(PCUT,X,2IN,IZ,2)
%X = X+1

LI YEQUAL(VCUT,X,7IN, I, )
~270 PEQUAL(PCUT,X,2IN,J,D)
GCTC 50

I

|

A}

-~

o1
CCNTINUE

NUM = X
RETURN
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LOGICAL FUNCTION VCOMP (MATRIX,I,J,R,C)

RETURNS 'TRUE’ IF VECTCR I OF MATRIX IS < (NOT STRICT)
AND 'FALSE' IF VECTOR I IS NOT < VECTCOR J OR IF VECTOR

IMPLICIT NONE

INTEGER I, J, PMAX, CMAX, R, C, K
PARAMETER (PMAX=50,CMAX=4)
LOGICAL TEST, EQUAL

REAL MATRIX (PMAX,CMAX)

CHECKX FOR EZQUALITY CF VECTORS

<
>l
s m
Y]

3N ?

[
@]
1w
=,

(EQUAL .AND. X .LT. C+1)
TH(T,XK) LT, MATRIX(C,X)) THeN

t "y
SRS

Q]
. (3]
AN RO R B D 3 .3 BRANS U} I e o)

(MATRIX (I, %) .GT. MATRIX(J,X)) THEN

]
o
4
|

[eogn o)
3 1y

~ONTINT

CHZCX FOR EINTRY OF J > EZNTRY OF I

3C 10 WHILE (TEST .AND. X .LT. C+1)

IF (MATRIX(I,X) .GT. MATRIX(J,K)) TEST .FALSE.

4 = K+1

(PRI

YVCCIMP = TEST JAND. (.:HCT. =ZQUAL)
2=moaN

fa SuMEET A

-\
=N

JCCMP

SUSRCUTINE VEQUAL(MATL,I,¥AT2,J,C)

S owvbuday o ol 172 WP S A7 S B PR VL vIvY

IM2LICIT NONZ

INTEGER I, J, PMAX, CMAX, C, K
PARAMETER (PMAX=50,CMAX=4)

REAL, MAT1 (PMAX,CMAX), MATZ2(PMAX,CMAX)

2C 10 %X=1,C

MATL(I,XK) = MATZ2(.,X)
ZCNTINUE
RETURN
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10

D
VEQUAL

SUBRQUTINE PEQUAL (MAT1,I,MATZ2,J,D)

SZ7TS COLUMN I OF MATRIX MATL

IMPLICIT NONE

INTEGER I, J, PMAX, NMAX, D,
PARAMETER (PMAX=50, NMAX=20)
INTEGER MATL (PMAX, NMAX-1), MA

DO 10 ¥=1,D
MATI(I,K) = MATZ2(J,X)
CCNTINUE
RETURN
N2

ZQUAL TO COLUMN J OF MATRIX MAT2

X

T2 (PMAX, NMAX~1)
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N

20
i0

(@]

THIS PRCGRAM FINDS THE NONDCMINATED PATHS IN A NETWCRX WITH TIMZ ZIZIITINT

VECTOR COSTS USING FORWARD DYNAMIC PROGRAMMING.

VARIABLES
N
M
c
2TR

STNODE
T

TIME
LCOST
UCosT

NUMBER OF NODES IN THE NETWORK

NUMBER OF LINKS IN THE NETWORX

NUMBER OF COST COMPONENTS TO A LINK

PTR(I) TELLS WHERE TOC LOOK IN STNODE FCR LINXS
LEADING TO NCDE I

STNODE (J) GIVES STARTING NCDE OF LINK J

T(I) IS THE TIME WHERE THE STEP IN LINK I CCCURS

TIME IS THE TIME REQUIRED TO REACH A SPZCIFIZID &

LCOST(L,J) IS THE JTH COST COMPONENT OF LINX I 3 =12 TIME 1T
UCOST(I,J) IS THE JTH COST COMPONENT OF LINK I AFTIR TINE T(I)
sx=x=x  (THE FIRST COST IN EACH VECTOR IS THE TIME TO RAV:A THE 1)

PCOUNT (CCOUNT)

PPREV (PCURR)

TREV (FCURR)
i NCNE
2LEAMETER (NMAX=20,
INTIGER
INTIGIR
INTZGER
RTAL 3
RCAL
REZAL
RTAL TIME, COST
IYTERNAL COST
2=45 1N NETWCRX

375 = 100.0

P P 13

CaLl READ(N,M,C,2T
z '“’AdTZE PATH
-C“UV”(
CCOUNT(

=
]

g
(1
<
~
-
N

s
-t

]

U
(@)

O
2
-1 N
§ o~
H

CCNTINUE

INITIALIZE PATHS
oo 25 I=1,N
-0 27 J=1,N-1
PPREV(I,1,J)
CCNTINUE

P N G e A
ZCOnT Ln\UE

PCOUNT (%) (CCOUNT(K}) IS THE NUMBER Of NCNDCMINAT
THAT LEAD INTO NODE X BEFCRZ (DURING)

PPREV (I, J,X) (PCURR(I,J,K)}) IS THE XTH NODE It
JTH NONDOMINATED PATH FRCM 1 TC I BEFCz=
ZACH ITERATION :

NOTE: PPREV(I,J,1l) (PCURR(I,J,1)) IS THE NUMBZr IF LIN¥E I
JTH NONDOMINATED PATH FROM 1 TO I BEFCRE (ZTURING)

ZACH ITERATICN
4

X) (FCURR(I,J,K)) IS

TpRzy (T, I, THE TUNCTICNAL VALUT o7
-uZ KTH CCST COMPONENT TCR THI JTH PATE T2
NC3E I 3EFCXE (DURING) ZACH ITEZRATIO

JTIGER N, NMAX, M, MMAX, C, CMAX, PMAX, I,J,%,3,3,Z,Y, MM

MMAX=100, CMAX=4, PMAX=50)

DTR (NMAX+1), STNCOE (MMAX), PCOUNT (NMAX), CCCOUNT (2MAX)
DPREV (NMAX, PMAX, NMAX-1), PCURR (NMAX, PMAX, NMAK-1)

DMAT (PMAX, NMAX~1), 2SOL (PMAX, NMAX-1)

1GM, MATRIX(PMAX,CMAX), SOLN(PMAX,CMAX)

LCOST (MMAX, CMAX) , UCOST (MMAX,CMAX), T (MMAX)

TDREV (NMAX, PMAX, CMAX), TCURR (NMRX, PMAX, CMAX)

R, STNCDZ, LCOST, UCCST, T)

CCUNTS AND FUNCTICNAL VALUES

3I5M

FRSY

I

]
(&)



Z TF A LINK (1,J) EXISTS, REINITIALIZEZ FTUNCTIONAL VALUE AND 2ATEH

DC 30 I=1,M

IF (STNCDE(I) .EQ. 1) THEN
50 IF (PTR(J+1l) .GT. I) THEN
DO 40 A=1,C
FPREV(J,1,A) = LCOST(I,A)
40 CONTINUE
PPREV(J,1,1) = %
ELSE
J = J+1
uOTO 50
ENDI
ENDIF
30 CONTINUE
c FOCRWARD DYNAMIC PRCGRAMMING
C NEEZD N-1 ITERATIONS
°C 40 %=1,N-1
WRITZ (5, %)
NRITZ(%,998) %
WRITZ(%,397)
z TCR NCDES 2 TO M
>C 70 I=2,N
z TCOR ZTACH LIVK (I,
Z =2
50 30 J=PTR(I),3TR(I+1l)-1
2 AND TOR ZACH PATH TO NCDE J
20 30 A=1,2PCCUNT(STNCDE (J))
C FIND COST OF EACH PATH TO NCDE I (DEPENDS CN TINVE)
2 = 2+1
TIME = TPREV(STNCDE(J),A,1)
D0 106 3=%,C
MATRI(Z,3) = TPREYV (STNODE (J) , A, B)
+ £CST(S,2,TIME,LCCET,UCOST, T
pSS TCNTINUZ
z ATDD ONE TC THE COUNT OF NCDES PER PATH
DMAT(Z,.) = PPREV(STNOCE(J),A,1) + 1
z GET NODES IN EACY PATH TO NCDE J
50 109 3=2,2MAT(Z,1) - 1
PMAT(Z,3) = PPREV(STNCDE(J),A,3)
S CCNTINCE
c A0 45T NCDE TCR NEW PATH
OMAT(Z,3MATIZ, 1)) = STNCDZ (J)
25 ,uu-::r\,...
2C CONTINU
C IND VECTOR MIN COF ALL PATHS
CALL wMIN(Z,C, -1 , NUM, MATRIX, PMAT, SCLN, 280L)
c UPDATE COUNT CF PATHS TO NCDE I
CCUNT (I} = NUM
C FCR =ZACH 2ATH

DO 110 A=1,NUM



120

[O)

GOy Oy O
ur Gy O

- O

[V RNV N ]

W OO O

)

2

(@]

UPDATE FUNCTIONAL VALUES
DO 120 B=1,C
FCURR(I,A,B) = SOLN({A,B)
. CONTINUE

AND UPDATZ PATH
DO 125 B=l,N-1

PCURR(I,A,3) = PSOL(A,B)
CONTINUE

QUTPUT NCDE, PATH NUMBER AND FUNCTIONAL VALUES
WRITE(6,999) I,A, (FCURR(I,A,B),B=1,C)

CONTINUE
CONTINUE
SET PCOUNT = CCOUNT, FPREV = FCURR, AND PPRZIV = PCURR

DO 65 I=2,N
PCOUNT (I} = CCOUNT (I}
DO 66 A=1,CCCUNT(I) < -
DO 67 B=1,C
FPREV(Z,A,B)
CONTINUE
20 58 B=i,N-1
DDREV(TI,A,2) = PCURR(I,A,3)
CONTINUE
it oo

[ORS1\ DA V-

SOoNTT r—~
et L L)

i

FCURR({I,A,B)

50 TO NZXT ITZRATICON
CNTINUZ
"C?AA”(’:T:?nT-yN Y, Id)
TCRMAT ("NCDE PATH NUMBER FUNCTICNAL VALUES')
TCRMAT (ZI4, I5, 4F10.1)

NRITE RESULTS TC 'NEZTWCRK.OUTPUT'

ZND
MRIN DRCGRAM

SURRCUTINE RFTAD (N, 4, C, PTR, STNCDE, LCOST, UCOST, T)

THTS SUBRCUTINE READS IN THE NETWCRK FRCM THE FILE 'NETWORX.C

CIT NCNE

ER NMAX, MMAX, CMAX, N, M, T, I, J
{ETER (NMAX=2C, MMAX=100, CMAX=4)
E-E R PTR(XNMAX+1), STNCDEZ (MMAX)

SOST (MAX, CMAX), UCTST(MMRX, TMREX), T (DMAX)

o TU b A
{ £

for 2 o
e D)

OPEN (2,FILE='NETWCRK.DATA')
OPEN (6, ILE='NETWCRK.CUTPUT')

ATA
e

READ NUMBER OF NCDES, NUMBER OF LINKS, AND NUMBER CF COST TITVPCONIUTE

READ(2,7) N, M,C

X=AD POINTZIR LIST
RTAD (2, 7) (PTR(I), I=1,M+1)

READ STARTNCDE LIST



@}

30

20
10
-\
b a¥al
1l
1.3
~
o
c

READ (2, %) (STNODE (I), I=1,M)

REAC IN COST OF EACH LINK
oC 30 I=1,M
READ (2, *) (LCOST(I
READ (2, *) (UCOST (I,
READ (2,*)} T(I)
CONTINUE
RETURN

1 2

Ul
D4
2 O

v

SUBROUTINE OUTPUT (N, M, C, FCURR, PCOUNT, 2CURR)

WRITES RESULTS TO ' NETWCRX.OUTPUT'

TMPLICIT NCNE
TNTIGIR ONMAX, MMAY, CMAL, =Ma¥, N, C
SLRAMTTIR (NMAX=20, wax=200, CMEX=4, 2Max=30)

o DCOUNT (220, PCURA (AR, PMAN, M=)
ToURR (NMAX, PMAK, DAL

TNTEZER I, 5,4 L

83}
[

1

JRITEZ(S, %)
NRITZ(6,.00) 1, (FCURR(L, 1, %), %=1,0)
WRITZ(5,1.0) 1,1
¢ 10 I=2,N
20 20 J=1,PCCUNT(I)

ARITE(S, ™)

WRITE (5, 100) 1, (FCURR(I,J,X),¥=1,C)

TT (PCURR(I,J,1) .ZQ. 2} THEN
WRITE(6,110) 1,2

144

tt

S

O m

o 30 L=l,P”URR(I,J,l)
I (L .2Q. 1) THEN
WRITZ(5,.10) l,?CURR(:,J,Z)
cTgon TT(L LI orURR (I, 5, 1)) ~YTN

LD - (SRS SN QPR
NRZTI(£,..01 PCURR(I, I, L), -
TToT

WRITZ(5,1:0) SCURR(I, J, L), 2CURR(I, J,L70)

o Pipy

CONTINUE

- —-

ToRMAT ('L TC ', 12, 4F7
. -

TCRMAT (' ('

REAL TUNCTICON COST(I,J,TIME,LCOST,UCOST,T)

~uTg FUNCTICON RETURNS THE JT4 COST EZLEMENT OF LINK I AT A
—uz 3TEP FUNCTION DEFINED TCR LINK I

GIVEN

mTAT
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INTEGER MMAX,CMAX, I,J

DARAMETER (MMAX=100, CMAX=4)

REAL LCOST (MMAX,CMAX), UCOST (MMAX,CMAX), T (MMAX)
(TIME .GE. T(I)) THEN

COsT UCOST (I,J)

LCOST(I,J)

Q
Q
0
-

i

SUBRCUTINE WMIN(R, C, D, NUM, VIN, PIN, VOUT, POUT)

T4TS SUBRCUTINE FINDS THE VECTOR MINIMUM (THE SET OF NON-SCMIMATZZ
TRCM TEIZ VECTORS IN VIN AND RETUXNS THE SCLUTICN THRCUGH VCUT.
—uZ ASSCCIATID PATHS 232 SENT 3Y 2IN AND RETURNED THRCOUGE 2CUT.
3 I3 THET NUMBER OF YECTORS SENT TO WMIN, X IS THE NUMBZR CF WzZTT
IMBLICIT NCNE
INTEIGER CMAX, C, I, J, X, PMAX, R, NUM, NMAX, O
?ARAI:-"? (CMAX=4, PMAX =30, N\MAX=2()
ZTAL VIN(PMAX,CMAX), VCUT(PMAX, CMAX)
INTZGEZR PIN(PMAX,NMAX-1), POUT (PMAX, NMAX-_)

yCcoMe
VCCMP,

AL
LOGICAL

ZXTZRNAL VEQUAL, Z2ZIQUAL

X =1
=2
IT (R .EQ. 1) THEN
C:\L- \/'C‘QU‘ZX_L(\/OUT,_,' ::}: :rC)

TALL PEQUAL(POUT, L,2I110,1,D)
—~m—m——aA
)

(I .Z2Q. R-1) THEN

50TC 30

2L3E IF (VCOMP (VIN, J, I, %, 0))
SCTO 20

: IF (VCOMP(VIN, I,J,R,C))

GOTO 30

—ranm
zL3=

“r T T

THEN

-
i)

THEN

{
C
t
'

3CTC 10
IF (J .EQ. R} THEN
J = J-1
©LSE
CALL VEQUAL (VIN,J,VIN,R,C)
ZALL PEQUAL(PIN,J,2IM,R,D)
EMDIT



£
D

(J .EQ. R) THEN

CALL VEQUAL (VOUT, K,VIN,I,C)
CALL PEQUAL (POUT, ¥, ?2IN, I,D}
¥ o= K+l

GCTO 20

ELSE

[

Iz

NDI

J = J+1
GOTO 10

iy

(VCOMP (VIN, J,I,R,C)) THEN

CALL
CALL
GOTO
ZLSE IF

CALL

VEQUAL (VOUT, K, VIN, J,C)
PEQUAL (POUT, K, PIN, J, D)

60

(VCCMP (VIN, I, J,R,C)) THEN
VEQUAL (VOUT, K VTV,_,C)
PEQUAL (POUT, K, 2IN, I,D)

60

Oy
(&)

(@

[

ZL3E
CALL VEQUAL (VOUT,K,VIY, I,C)
CALL DTQLP'(DOUT,K,?IS,I,Z)
X = X+1
CALL VEQUAL(/CUT, X, VTN, 1,3
CALL PECUAL(ZCUT,%,25MH,70,0)
~~r fda)
5 NVSY (o XV

ZOGICAL FTUNCTICN WCCMP (MATRIN,I,J, 2, 2)
SETURNS *TRUZ' IF VECTCR I OF MATZIX I35 < (NOT 3TRI
AND 'FALSE' IF VECTICR I IS NOT < JZZTZR J CR IT °

IMPLICIT NCNZ

INTEGER I, J, 2MAX, CMAX,
PARAMETER (PMAX=50,CMAX=
LCGICAL TEST, EQUAL

REAL MATRIX (PMAX, CMRX)

7 = .TRUE.

TES
QAL = (TRUZ.
£ =

R ZQUALITY COF VZZTTIRS

o0 S5 WHILE (EQUAL .AND. X .LT.
I7 (MATRIX(I,K) .L7T. MaATRI)
.FALSE.

ZQUAL =
X = K+l
SILSE IF (MATRIX(I,X) .37. MATRI( ,X)) THEN
EQUAL = .FALSE.
TEST = .FALSE.
ZLSE



(@]

-
(@]

@]

o\

ENTRY OF J > ENTRY OF I

0 WHILE (TEST .AND. K .LT. C+1}
F (MATRIX(I,K) .GT. MATRIX(J,X))

YCCMP = TEST .AND. (.NOT. ZQUAL)

RETURN

IND
VClMP

SUBRCUTINE VEQUAL (MATL, I, MATZ,J,C)
SIT3 ZCLUMD I CF MATRIN MATL ZQUAL TO

TMDTLICTT

HCNE

1

INTEIGER I, J, PMAX, CMAX, C, X
DARAMETEIR (PMAX=30, CMAX=4)

XEZAI MRTI(2MAX, CMAX), MAT2 (PMAX, CMRX)
>C 1 %X=L,C

MATL(I,K} = MATZ2(J,K)
CCONTINUE

RETURN

14
<

o}
QUAL

I

v

ST TN, - oAn
(OEORIVALLL SRS

MATRIX MATL EQUAL IC

IMPLICIT NCNE

INTEGER I, J, PMAX, NMAX, D, X

2ARAMETER (PMAX=350, NMAX=20)

INTEGER MATL (PMAX, NMAX-1}),

2C 10 #=1,3
MATI(I,%) = MATZ2(J,K)

g
oNTTY

RETUYRN

'/

D
<

‘oM

-

UAT

TEST

~r
CCLU

MM

J

~o
Nk

MATRIX MATZ

COLUMN J OF MATRIX MAT2

MAT2 (PMAX, XMAX-1)

FCR
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This input file is for the network representing the house in sscticn 3 I-r ths
constant vector cost case.
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The following input file is for the network representing the building in s
with time dependent vector costs. The 34 vector costs have three ot

S CComD
the lower step, the upper step, and the time where the step occurs
Executing TD with this data file will produce all nondominated patihs Zrem

to every other node.
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This output is for the time dependent vector cost fire 2gress prceblam
in section 6.

ITERATION 1

NODE PATH NUMBER FUNCTIONAL VALUES
2 1 1.0 1.0
3 1 2.0 2.0
4 1 5.0 4.0
S 1 200.0 200.0
6 1 101.0 101.0
7 1 200.0 200.0
8 1 1G6.0 103.0
9 1 103.0 102.0

10 1 103.0 102.0
P 1 101.0 101.0
12 1 200.0 200.0
13 1 106.0 102.0
14 1 200.0 206.0
L3 i 122.3 165.0
5 1 J 2.0

ITZRATION 2

CDE DATH NUMBER  FUNCTIONAL VALUES
2 i 1.3 1.0
3 1 2.9 2.0
4 i 5.0 4.0
5 i 105.9 104.0
3 1 9.0 5.0
7 1 201.90 201.0
3 i 13.0 9.0
3 1 109.0 105.0

20 1 20.0 12.0
il 1 104.0 103.0
22 i 203.0 202.0
13 1 203.90 202.0
_4 L 2C6.0 202.0
tz b 2139 106.0
i3 i 2.7 2.0

ITZRATION 3

NCOE  9ATH NUMBER  FUNCTIONAL VALUES
2 L 1.9 1.3
3 i 2.9 2.0
4 1 5.9 4.0
5 1 105.9 104.90
5 1 3.0 6.0
7 1 109.9 106.0
3 1 13.90 9.0
3 1 15.0 11.0
10 1 20.9 12.0
i1 1 21.3 13.0
12 1 120.9 112.0
13 1 120.9 112.0
14 1 303.90 302.0
15 ] 116.0 108.0
15 : 2.9 2.0
ITZRATION 4
NCDE PATH NUMBER TINCTIONAL VALUES
2 : 1.0 1.0
P 1 2.9 2.0
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ITERATION
NCDE PATH
2

VWU W WM O W W oYU W

el i e N S S =

WO oYU b Wi

1 2.0 2
8
NUMBER TUNCTIGNAL
1 1.0 1
1 2.0 2
1 5.0 4
1 105.0 104
1 9.0
1 109.0 106
1 13.0
1 16.0 11
1 20.0 12.
1 21.0 13.
1 120.0 112.
1 120.0 112.
1 220.0 212.
1 33.0 18.
1 2.0
9
NUMBER FUNCTIONAL
1 1.0 1.
1 2.0 2.
1 5.0 4.
1 105.90 104.
1 9.2
1 109.90 106
1 13.0
1 15.0 1
1 20.0 b3
1 21.0 1
1 120.0 11
1 120.0 1
1 220.0 21
1 33.0 1
1 2.0
10
NUMBER FUNCTIONAL
1 1.0
1 2.0
1 5.0 4
1 105.0 104
1 9.0 5.
1 106.8 106
1 13.0
1 16.0 11
1 20.0 12.
1 21.0 13.
1 120.0 112
1 120.0 112
1 220.0 212.
1 33.0 18.
1 2.0 2
11
NUMBER  FUNCTICNAL
1 1.0 1
1 2.0 2.
1 5.0 4.
1 105.90 104.
1 8.0 5.
1 108.0 106.
1 13.0 3.
1 16.0 11.
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ITERATION
NCDE PATH
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ITERATION
NODE PATH
2
3

1 20.0 12.0
1 21.0 13.90
1 120.0 112.0
1 120.0 112.0
1 220.0 212.0
1 33.0 18.0
1 2.0 2.0
12

NUMBER FUNCTICNAL VALUES
1 1.0 1.0
1 2.3 2.0
1 5.0 4.0
1 105.0 104.0
1 8.0 6.0
1 106.90 106.0
1 13.0 9.0
1 15.0 11.0
1 20.0 12.0
1 21.0 13.0
1 120.0 112.0
1 120.0 112.0
1 220.0 212.0
1 33.0 18.0
l 2.9 2.0
i3

NUMBER FUNCTIONAL VALUES
1 2.9 1.0
1 2.2 2.0
z 5.0 4.0
1 165.0 104.0
1 9.0 6.0
1 199.90 106.0
1 13.2 9.0
1 16.0 11.0Q
1 20.9 12.0
: 21.90 13.0
1 129.9 112.0
1 120.0 112.0
1 220.0 212.0
1 33.9 18.0
i 2.0 2.0
NUMBER  FUNCTIONAL VALUES
1 1.0 1.0
1 2.0 2.0
1 5.0 4.0
1 105.0 104.0
1 9.0 6.0
L 159.0 106.0
1 13.9 9.0
1 5.0 11.0
1 20.0 12.0
1 21.0 13.9
1 120.0 112.0
1 120.0 112.0
1 220.0 212.0
1 33.0 18.0
1 2.0 2.0
15

NUMBER TUNCTICNAL VALUES
1 1.0 1.0
1 2.0 2.0
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